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ABSTRACT

Tropical cyclone (TC) intensity prediction, especially in the warning time frame of 24–48 h and for the pre-

diction of rapid intensification (RI), remains a major operational challenge. Sea surface temperature (SST) based

empirical or theoretical maximum potential intensity (MPI) is the most important predictor in statistical intensity

prediction schemes and rules derived by data mining techniques. Since the underlying SSTs during TCs usually

cannot be observed well by satellites because of rain contamination and cannot be produced on a timely basis for

operational statistical prediction, an ocean coupling potential intensity index (OC_PI), which is calculated based

on pre-TC averaged ocean temperatures from the surface down to 100m, is demonstrated to be important in

building the decision tree for the classification of 24-h TC intensity change DV24, that is, RI (DV24 $ 25 kt, where

1 kt5 0.51m s21) and non-RI (DV24 , 25 kt). Cross validations using 2000–10 data and independent verification

using 2011 data are performed. The decision tree with the OC_PI shows a cross-validation accuracy of 83.5% and

an independent verification accuracy of 89.6%, which outperforms the decision tree excluding the OC_PI with

corresponding accuracies of 83.2% and 83.9%. Specifically for RI classification in independent verification, the

former decision tree shows a much higher probability of detection and a lower false alarm ratio than the latter

example. This study is of great significance for operational TCRIprediction as pre-TCOC_PI can skillfully reduce

the overestimation of storm potential intensity by traditional SST-based MPI, especially for the non-RI TCs.

1. Introduction

Tropical cyclones (TCs) usually cause huge economic

losses and casualties through strong winds, flooding, and

storm surge during and after making landfall (e.g., Zhang

et al. 2009). Timely and accurate prediction of TC tracks

and intensity therefore plays an important role in disaster

mitigation. Although both operational track and intensity

predictions have been significantly improved in recent

decades, the intensity forecast still lags the track forecast
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and is a big challenge since the improvements of intensity

guidance for the warning time frame (24–48h) are the

slowest (DeMaria et al. 2014) and the skill of rapid in-

tensification (RI) prediction is still very poor (Kaplan

et al. 2010).

TC intensity change is affected by a combination of

complicated physical processes (e.g., Wang and Wu

2004; Elsberry et al. 2013) that can be divided into three

main categories: environmental effects such as vertical

wind shear and humidity (e.g., Merrill 1988; DeMaria

1996; Hanley et al. 2001; Emanuel et al. 2004; Yu and

Kwon 2005; Zeng et al. 2007, 2008, 2010; Wang 2009;

Hendricks et al. 2010; Ge et al. 2013); underlying sur-

face forcing such as sea surface temperature, sea spray,

and air–sea exchange coefficients (e.g., Emanuel 1986;

Shay et al. 2000; Lin et al. 2009; Gao and Chiu 2010; Ito

et al. 2015); and internal dynamics such as eyewall re-

placement and vortex Rossby waves (e.g., Montgomery

and Kallenbach 1997; Sitkowski et al. 2011). Physics-

based numerical simulation and statistical analysis

have been shown to be effective tools for understand-

ing the impacts of the physical processes on TC inten-

sity change. Statistical–dynamical models have been

used to predict intensity and rapid intensification

probability (e.g., Knaff et al. 2005; Kaplan et al. 2010;

Gao and Chiu 2012) and have shown greater skill

compared to forecasts of individual physics-based dy-

namical models; the statistical–dynamical model run

with various inputs from dynamical models is still being

used to produce consensus forecasts over the western

North Pacific (WNP) (DeMaria et al. 2014).

Unlike traditional statistical approaches, datamining is

referred to as ‘‘the nontrivial process of identifying valid,

novel, potentially useful, and ultimately understandable

patterns in data’’ (Fayyad et al. 1996; Leung 2010). These

approaches adapt data not normally suitable for statisti-

cal modelswith strict assumptions (such as independence,

stationarity of the underlying processes, and normality).

Data mining methods can be employed to unravel clas-

sification, clusters, association rules, decision rules, and

other patterns from archived databases (Han and

Kamber 2006; Leung 2010). For TC research, association

rule mining has been successfully used to discover asso-

ciation rules for the rapid intensification of Atlantic

hurricanes (Yang et al. 2007, 2008, 2011). In addition, a

decision tree approach [e.g., the C4.5 algorithm; Quinlan

(1993)] has also been used for the classification of TC

intensity change (Zhang et al. 2013a, hereafter referred to

as Z13A), as well as analyses of TC genesis, recurvature,

and landfall over the WNP (Zhang et al. 2013b,c; Zhang

et al. 2015). The decision tree method makes no prior

assumptions for the multicollinearity, multivariate nor-

mality, nonautocorrelation, and homoscedasticity of

independent variables while many conventional multiple

regression methods need to consider such assumptions.

The superiority of decision trees compared to association

rules is found in the fact that decision trees can accom-

modate continuous scale data while thresholds must be

used to divide continuous data into categorical or ordinal

scales so as to be analyzed by association rules. In con-

trast, classification algorithms such as neural networks

can classify two types of samples. However, it is in-

convenient to interpret the results derived from a neutral

network algorithm. Instead of an input–output black box

of a neutral network, decision trees can unravel key

variables, thresholds for each selected variables, and rules

based on the combination of variables and thresholds,

and also trace back to the original samples.

In Z13A, the most important variable selected to

build a decision tree was the intensification potential

obtained by subtracting the current intensity from the

maximum potential intensity (MPI; e.g., Emanuel 1988;

DeMaria and Kaplan 1994; Holland 1997). MPI is the

most important predictor in all of the statistical models

(e.g., Knaff et al. 2005; Kaplan et al. 2010; Gao and Chiu

2012) and mining rules for TC intensity prediction (e.g.,

Yang et al. 2007, 2008, 2011; Z13A), in which MPI was

empirically calculated from sea surface temperature

(SST). Lin et al. (2013) developed a new Ocean Coupling

Potential Intensity index (OC_PI), which effectively re-

duces overestimation of the archived maximum intensity

by SST-based MPI and increased the correlation of max-

imum intensity estimation, especially for slowing-moving

TCs (Lin et al. 2013). It is thus intriguing to examine

whether OC_PI can improve the intensity change classi-

fication of TCs over the WNP using the C4.5 algorithm.

The objectives of this study are to assess (i) whether and to

what extent the integration of OC_PI in the classification

model can improve its performance and (ii) how themodel

(i.e., the decision tree) will change after the integration of

OC_PI. This study is expected to improve the classification

accuracy of TC intensity change and provide valuable

references for the prediction, analysis, and mitigation of

TC-related hazards in coastal regions.

The data and methodology are described in section 2.

Section 3 presents an improved decision tree with OC_PI

for TC intensity change classification, followed by a sum-

mary and discussion given in section 4.

2. Data and methodology

a. Data

The 6-hourly location and 10-minmaximum sustained

wind speed (MWS) of WNP TCs are obtained from

the final analysis of best-track data produced by the
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Regional Specialized Meteorological Center (RSMC)

Tokyo-Typhoon Center. The 24-h change in TC in-

tensity (i.e., change in MWS, DV24, during 0 and 24h)

can be regarded as a binary classification problem (i.e.,

RI or non-RI). The following criteria are used to define

two classes: RI (DV24 $ 25 kt, where 1 kt 5 0.51ms21)

and non-RI (DV24 , 25 kt), where 25 kt day21 corre-

sponds to the 95th percentile of the 24-h intensity

change, which is often used as a threshold to define the

RI of TCs (e.g., Kaplan and DeMaria 2003). TC cases

are sampled if their intensity changes meet the criteria.

The TC cases with DV24 $ 25kt are labeled as class 1

whereas those with DV24 , 25 kt are labeled as class21.

Environmental data are derived from the National

Centers for Environmental Prediction’s (NCEP) Global

Forecasting System (GFS) Final (FNL) gridded analysis

at 18 3 18 spatial and 6-h temporal resolution. The FNL

analysis incorporates the most complete set of obser-

vational data and is likely the best option for a long-term

operational model archive from NCEP (NOAA/

National Centers for Environmental Prediction 2000).

The variables used in this study include the wind at 200

and 850 hPa, as well as the air temperature and relative

humidity at all levels ranging from 100 to 1000 hPa. The

200-hPa divergence and relative eddy flux convergence,

along with the 850-hPa relative vorticity at each grid, are

calculated using the wind field and the central difference

method. All of the environmental variables are derived

by averaging corresponding data within some specific

radius from TC centers; that is, the relative humidity,

temperature, zonal wind, and vertical wind shear are

averaged in the circular ring with an outer radius of

800km and an inner radius of 200 km, the divergence

and relative vorticity are averaged in the circle with a

radius of 1000km, and the relative eddy flux conver-

gence is averaged in the circle with a radius of 600 km.

Daily optimally interpolated SST (OISST) data at

0.258 spatial resolution (Wentz et al. 2000) from the

composite of the Tropical Rainfall Measuring Mission

(TRMM) Microwave Imager (TMI) and the Advanced

Microwave Scanning Radiometer for Earth Observing

System (AMSR-E) satellite retrievals are provided by

the Remote Sensing Systems (RSS). The other compo-

nents of upper-ocean temperature profiles, including the

depth of the 208C (D20) and 268C (D26) isotherms at

daily and 0.258 resolutions, are derived using a two-layer

reduced-gravity ocean model proposed by Shay et al.

(2000) and sea surface height anomaly estimated from

multiple satellite altimetry missions, including TOPEX/

Poseidon, Jason-1, Jason-2, ERS-1, ERS-2, and the En-

vironmental Satellite (ENVISAT) altimeters (Pun et al.

2007; Lin et al. 2013). Surface–80-m averaged ocean

temperature (T80a) and surface–100-m averaged ocean

temperature (T100a) are then calculated by linearly in-

terpolating the upper-ocean temperature profiles. The

TC-induced mixing depth that depends on the TC

translation speed, size, and intensity, as well as on the

upper-ocean thermal structure, is typically 60–100m

(Price 2009). Lin et al. (2013) found that T80a-based

OC_PI greatly reduced the overestimation of the TC

maximum intensity by SST-based MPI, especially for

slow-moving TCs, while T100a-based OC_PI shows the

highest correlation with the observed maximum in-

tensity for overall TCs (see their supplementary Fig. 9e);

therefore, T80a and T100a are both used for OC_PI

calculation to figure out which one is best for the overall

TC intensity change classification. Upper-ocean heat

content (UOHC) is also calculated from the surface to

D26 following Leipper and Volgenau (1972).

MPI can be estimated empirically (DeMaria and

Kaplan 1994) and theoretically (Emanuel 1988; Holland

1997). Empirical MPI (MPI_E) is estimated using its

statistical relationship with SST:

MPI_E5 29:761 108:1e0:1141(SST230) . (1)

Theoretical MPI (MPI_T) is calculated using tempera-

ture sounding data as a function of pressure from NCEP

FNL analysis and SST from the RSS and Emanuel’s

software package (ftp://texmex.mit.edu/pub/emanuel/

TCMAX/), and is expressed by

MPI_T5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SST2T

0

T
0

C
k

C
D

(k*2 k)

s
, (2)

where T0 is the TC outflow temperature that can be

estimated via finding out how high up in the eyewall the

air remains warmer than the distant environment by

conducting a straightforward assessment of the given

vertical profile of temperature in the storm environ-

ment; Ck is the enthalpy exchange coefficient; CD is the

drag coefficient; the ratio of Ck to CD is assumed to be

0.9. Here, k* is the saturation enthalpy of the sea sur-

face, and k is the surface enthalpy in the TC environ-

ment, which can be assumed as the convective available

potential energy of the sea surface and the near-surface

air at the radius of maximum winds, respectively. The

expression of k* (Emanuel 1994) is shown as

k*5

ðLFC
LNB

R
d
(SST2T

env
)d lnp , (3)

where LFC andLNB are the level of free convection and

level of neutral buoyancy, respectively. In addition, Tenv

is the sounding environmental temperature,Rd is the gas

constant, and p is pressure.
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The value ofOC_PI is also computed using Emanuel’s

software package but by replacing SST with precyclone

T80a (this OC_PI is called MPI_T80a),

MPI_T80a5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T80a2T

0

T
0

C
k

C
D

(k*2 k)

s
, (4)

or by precyclone T100a (this OC_PI is called MPI_

T100a),

MPI_T100a5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T100a2T

0

T
0

C
k

C
D

(k*2 k)

s
. (5)

The reason for using the pre-TC condition is that T80a or

T100a calculated from the pre-TC profile can be considered

tobeaproxy for the ‘‘during-TCcouplingSST’’ (Price2009),

which usually cannot be observed. For the stages before and

after the peak in TC intensity, MPI_T80a and MPI_T100a

are computedbasedon theoceanic profiles 2 daysbefore the

intensity first reaches category 1 (i.e., MWS $ 64kt) and

2 days before the peak intensity, respectively.

All of the potential variables are summarized inTable 1.

They are collected every 6h during 2000–11, which rep-

resents the maximum period during which all the datasets

used in this study are available. Only overwater TC sam-

ples are considered here because of the availability of

upper-ocean temperature profiles.

b. Decision tree method

The decision tree method is known as a data min-

ing approach for disentangling rules, patterns, and

knowledge for decision-making procedures from ar-

chived databases (Quinlan 1993). A root node and a

set of splits and leaf nodes are essential components

of a decision tree. In classification, a dataset is se-

quentially divided in line with the decision framework,

and a class label (i.e., 1 or21 in this study) is allocated

to each observation according to the leaf node to which

this observation belongs. The C4.5 algorithm is a

widely used decision tree algorithm whose proper

strategy involves the selection of a variable at each

node that perfectly partitions samples into several

classes via a specified measurement, ‘‘information

gain,’’ based on information-theoretic ‘‘entropy’’

(Quinlan 1993). The structure of a decision tree is

determined by the tests performed at each node. At

any given node, the C4.5 algorithm only tests the var-

iable that produces the highest degree of discrimina-

tion between local classes.

Formally, we let S be the training set consisting of s

data samples, where si is the number of observations in S

that belong to class i (i 5 1, 2). Here, S includes RI and

non-RI TC cases while s1(s2) represents the number of

RI (non-RI) samples. The information (entropy)

needed to classify S is

Info(S)52�
m

i51

s
i

s
log

2

�s
i

s

�
: (6)

Hence, the amount of information needed to partition S

into {S1, S2} by variable X (e.g., relative humidity, tem-

perature, zonal wind, and vertical wind shear) with m

distinct values is

TABLE 1. The 19 potential variables used to build the decision tree and their correlation coefficients r with 24-h typhoon

intensity change.

Variable Description r

MWS0 Initial maximum wind speed (MWS) 20.46

DMWS Change in MWS during the past 12 h 0.44

JDAY Absolute value of Julian day 2 248 20.03

LAT Latitude of storm center 20.35

LON Longitude of storm center 0.18

SPD Storm translational speed 20.02

RHLO Area-averaged (200–800 km) relative humidity at 850–700 hPa 0.16

RHHI Area-averaged (200–800 km) relative humidity at 500–300 hPa 0.18

U200 Area-averaged (200–800 km) zonal wind at 200 hPa 20.23

T200 Area-averaged (200–800 km) temperature at 200 hPa 20.29

d200 Area-averaged (0–1000 km) divergence at 200 hPa 0.09

REFC Relative eddy flux convergence within 600 km at 200 hPa 0.05

SHR Area-averaged (200–800 km) 200–850-hPa wind shear 20.31

USHR Area-averaged (200–800 km) 200–850-hPa zonal wind shear 20.19

z850 Area-averaged (0–1000 km) 850-hPa relative vorticity 0.02

UOHC Upper-ocean heat content 0.30

POT_E Empirical maximum potential intensity (MPI) 2 MWS0 0.38

POT_T Theoretical MPI calculated from SST 2 MWS0 0.43

POT_T100a Theoretical MPI calculated from precyclone 0–100-m-depth averaged temperature 2 MWS0 0.45

POT_T80a Theoretical MPI calculated from precyclone 0–80-m-depth averaged temperature 2 MWS0 0.42
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Info
X
(S)52�

m

i51

s
i

s
3 Info(S

i
) . (7)

The information gained by partitioning S in accordance

with the test X is

gain(X)5 Info(S)2 Info
X
(S) . (8)

The gain criterion performs the selection of a test to

maximize this information. The variable with the highest

gain is selected for the first splitting in the construction

of a decision tree. The succeeding partitions stop when

the preset threshold (e.g., minimum leaf size) of the

decision tree is reached.

Our database is imbalanced because the sample

number of the RI class is much lower than the non-RI

class. The classification results produced by the C4.5

algorithm tend to be biased if the two classes are im-

balanced (Chawla 2003; Estabrooks et al. 2004; Han

et al. 2005). Therefore, resampling is used to avoid bi-

ased results. The synthetic minority oversampling tech-

nique (SMOTE; Chawla 2003) is employed in this study

to oversample the cases in the RI class.

c. Cross validation and independent verification

Cross validation is used for verification of the decision

tree trained by samples over the period 2000–10. In

addition, samples during the year 2011 are used for in-

dependent verification. The k-fold cross-validation

method is summarized as follows. The entire database

is first divided into k equal-size parts. The training and

validation are then carried out for k iterations. In each

TABLE 2.Means of 19 potential variables for RI class and non-RI

class and their differences between two classes (RI and non-RI)

based on 2000–11 data.Differences significant at the 95%, 99%and

99.9% level, appear in italic, boldface, and boldface italic

respectively.

Variable Unit

Mean

DifferenceRI Non-RI

MWS0 kt 57.7 68.8 211.1

DMWS kt 10.1 3.3 6.8

JDAY day 24.8 28.1 23.3

LAT 8 17.4 21.3 23.9

LON 8 139.3 135.2 4.1

SPD m s21 9.6 9.4 0.2

RHLO % 78.0 76.2 1.8

RHHI % 61.6 56.9 4.7

U200 m s21 21.7 20.2 21.5
T200 8C 250.7 249.7 21.0

d200 1026 s21 6.2 5.0 1.2

REFC m s21 day21 2.0 0.7 1.3

SHR m s21 15.1 17.1 22.0

USHR m s21 0.1 1.1 21.0

z850 1026 s21 10.8 11.5 20.7

UOHC kJ cm22 86.8 66.7 20.1

POT_E kt 97.0 63.5 33.5

POT_T kt 49.2 45.1 4.1

POT_T100a kt 60.5 15.1 45.4

POT_T80a kt 65.6 26.3 39.3

FIG. 2. As in Fig. 1, but for the decision tree that is constructed from

all the potential predictors in Table 1.

FIG. 1. The decision tree for typhoon intensity change classifi-

cation constructed from the potential predictors in Table 1 except

for UOHC, POT_T100a, and POT_T80a. Rectangles are leaf no-

des and ellipses are parent nodes. The numbers in the leaf nodes

indicate the classified class label (RI is 1; non-RI is 21), the total

number of samples from both classes fulfilling the conditions of

each tree path, and the number of misclassified samples.
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iteration, a part of the dataset is used for validation

whereas the remaining k2 1 parts are used for training.

This is repeated until each part has been used once for

validation. Tenfold cross validation is used in the pres-

ent study; the decision trees are quite stable during the

cross-validation procedure, as indicated in the supple-

mentary material. As such, the numbers of correctly and

incorrectly classified samples for 10 iterations are ac-

quired. The prediction accuracy is then obtained by di-

viding the correctly classified samples by the number of

samples in the entire database. Hence, cross validation

ensures that each sample of the database can be used for

both training and validation, and the training and testing

samples are independent in all 10 iterations. This results

in the high generalization capability of the decision tree

as learned by the C4.5 algorithm.

3. Results

a. Decision trees

Two decision trees are built to show the advancement

of OC_PI: the decision tree constructed from the poten-

tial predictors in Table 1, except UOHC, POT_T100a

(MPI_T100a minus MWS0), and POT_T80a (MPI_T80a

minusMWS0), and the decision tree constructed from all

potential variables in Table 1. The two decision trees are

indicated in Figs. 1 and 2 , respectively. To better di-

agnose the relationship between the unravel rules and the

TC intensity change, the composites of all the potential

variables for RI and non-RI samples are performed and

the results are shown in Table 2. All of the potential

variables are significantly different except for storm

translational speed, relative eddy flux convergence,

850-hPa relative vorticity, and zonal wind shear.

Figure 1 shows that previous 12-h TC intensity change

(DMWS), vertical wind shear (SHR), initial intensity

(MWS0), and longitude of TC center (LON) are selected

to build this decision tree. These variables all show sig-

nificant differences between RI and non-RI samples in

Table 2 and are commonly used for constructing the RI

index (Kaplan et al. 2010; Shu et al. 2012). Shu et al.

(2012) also found the significant difference in LON using

data of a longer period and showed a preference for RI to

occur eastward of 1308E. TheC4.5 algorithm finds amore

precise value of 128.68E. The main physical differences

may be a result of the land effect because more energy is

dissipated by friction when a TC is approaching the

landmasses of the Philippines and eastern China, and

there are generally fewer energy supplies around the

landmass than are available over the open ocean. The

physical explanations of DMWS, SHR, and MWS0 will

be discussed later in this section.

Among the five decision rules governing TC intensity

change in Table 3, the highest accuracy is 94.8% for rule

1 whereas the lowest accuracy is 54.7% for rule 4. The

low accuracy of rule 4 may be due to TCs offshore of

East Asia and in the South China Sea (SCS) sometimes

experiencing RI when the environmental conditions are

favorable (e.g., Gao and Chiu 2010; Yu et al. 2013).

Tenfold cross validation of the decision tree shows an

accuracy of 83.2% (Table 4), and the accuracy of in-

dependent validation is only 83.9% (Table 5). As shown

in the confusion matrix from independent validation in

Table 5, only 4 out of 11RI events are correctly classified

and 27 out of 31 classified RI events are actually non-RI

events; the results also indicate a low probability of de-

tection (POD) of only 36.4% and a high false alarm ratio

(FAR) of 87.1%. These statistics indicate the low skill

for TC intensity change classification.

DMWS, SHR, MWS0, and POT_T100a are selected

to build the decision tree (shown in Fig. 2) from all the

potential predictors. We include POT_T100a in the

decision tree, indicating its importance to TC intensity

change classification. This also suggests that pre-TC

TABLE 4. Confusion matrix from cross validation of the decision

tree shown in Fig. 1 (accuracy 5 83.2%).

Classified

RI Non-RI

Observed RI 1680 239

Non-RI 406 1513

TABLE 3. Five unraveled rules governing TC intensity change in the decision tree shown in Fig. 2.

Rule No. Rule description Accuracy

1 If DMWS # 0 kt, then a TC will not rapidly intensify 949/1001 5 94.8%

2 If DMWS . 0 kt, and SHR . 18.3m s21, then a TC will not rapidly intensify 226/240 5 94.2%

3 If DMWS . 0 kt, and SHR # 18.3m s21 and MWS0 . 80 kt, then a TC will not

rapidly intensify

182/205 5 88.8%

4 If DMWS . 0 kt, and SHR # 18.3m s21, MWS0 # 80 kt, and LON # 128.68,
then a TC will not rapidly intensify

163/298 5 54.7%

5 If DMWS . 0 kt, and SHR # 18.3m s21, MWS0 # 80 kt, and LON . 128.68,
then a TC will rapidly intensify

1695/2094 5 80.9%
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T100a is a better proxy for SST than pre-TC T80a for

typhoon RI and non-RI classification.

Table 6 lists five rules governing TC intensity change.

Rule 1 (if DMWS # 0 kt, then a TC will not rapidly in-

tensify) shows that RI generally will not happen if a TC

was in a decaying or steady state in the past 12 h, sug-

gesting the importance of persistence for RI occurrence;

this finding is consistent with previous statistical studies

for TCs in different basins (e.g., Kaplan and DeMaria

2003; Kaplan et al. 2010; Shu et al. 2012). The compos-

ites in Table 2 also show that DMWS results for RI and

non-RI samples are significantly different at the 99.9%

level. This rule shows a high accuracy of 94.8%.

Rule 2 states that if DMWS . 0 kt, and SHR .
18.3m s21, then a TC will not rapidly intensify, sug-

gesting that a TC in a high-shear environment will not

rapidly intensify even if it was in a developing phase

previously. As indicated in Table 2, the vertical wind

shears of RI and non-RI samples are significantly dif-

ferent at the 99.9% level, and it has been widely ac-

cepted that high vertical wind shear is unfavorable for

TC intensification. The most prominent mechanisms are

themidlevel warming hypothesis of DeMaria (1996) and

the venting hypothesis of Gray (1968) and Frank and

Ritchie (2001). The classification accuracy of this rule is

as high as 94.2%.

Rule 3 states that if DMWS . 0 kt, and SHR #

18.3m s21 andMWS0. 80kt, then a TC will not rapidly

intensify. Previous development and relatively low

vertical wind shear are both favorable for TC RI,

whereas the TC will not rapidly intensify if MWS0 is

larger than 80kt. This is reflected in the composite of

MWS0 in Table 2: the mean initial intensity of RI sam-

ples is significantly lower than that of non-RI samples at

the 99.9% level. A recent statistical study by Xu and

Wang (2015) also found that RI most frequently occurs

when initial TC intensity is in a narrow range of 70–80 kt.

The dependence of the intensification rate on the initial

TC intensity can be understood based on a simplified

dynamical system for TC intensity prediction developed

by DeMaria (2009): the intensification rate reaches a

maximum when the TC is at its intermediate intensity.

This rule has a high accuracy of 88.8%.

Rule 4 states that if DMWS . 0 kt, and SHR #

18.3m s21, MWS0 # 80kt, and POT_T100a # 12.1 kt,

then a TC will not rapidly intensify. If a relatively weak

TC was previously intensifying and is in a low-shear

environment, although these conditions are all favorable

for RI, the TC tends not to rapidly intensify if POT_

T100a is relatively low. Again, Table 2 shows the sig-

nificant difference in POT_T100a between RI and non-

RI samples at the 99.9% level. The TC that is close to its

MPI hardly undergoes RI. The accuracy of this rule is

67.6%; although it is the lowest in this decision tree, it is

much higher than the accuracy of rule 4 in the other

decision tree (54.7%).

Rule 5 states that if DMWS . 0 kt, and SHR #

18.3m s21, MWS0 # 80kt, and POT_T100a . 12.1 kt,

then a TC will rapidly intensify. This rule indicates that

intensification in the previous 12 h, low vertical wind

shear, relatively weak current intensity, and current in-

tensity far from the MPI_T100a are all favorable for RI,

and RI generally take places when all four conditions

are satisfied. The importance of POT_T100a for TC in-

tensity change classification is highlighted. The accuracy

of this rule is 80.6%.

Tenfold cross validation of this decision tree shows a

classification accuracy of 83.5% (Table 7), and the ac-

curacy of the independent verification is 89.6%. The

confusionmatrix from independent validation in Table 8

indicates that 9 out of 11 RI events are correctly classi-

fied and 20 out of 29 classified RI events are actually

non-RI events; thus, the POD is 81.8% and the FAR is

70.0%. All of these statistics are better than those of the

other decision tree built without OC_PI-related vari-

ables. The results demonstrate that the inclusion of

TABLE 6. Five unraveled rules governing TC intensity change in the decision tree shown in Fig. 1.

Rule No. Rule description Accuracy

1 If DMWS # 0 kt, then a TC will not rapidly intensify 949/1001 5 94.8%

2 If DMWS . 0 kt, and SHR . 18.3m s21, then a TC will not rapidly intensify 226/240 5 94.2%

3 If DMWS . 0 kt, and SHR # 18.3m s21 and MWS0 . 80 kt, then a TC will

not rapidly intensify

182/205 5 88.8%

4 If DMWS . 0 kt, and SHR # 18.3m s21, MWS0 # 80 kt, and POT_T100a # 12.1 kt,

then a TC will not rapidly intensify

138/204 5 67.6%

5 If DMWS . 0 kt, and SHR # 18.3m s21, MWS0 # 80 kt, and POT_T100a . 12.1 kt,

then a TC will rapidly intensify

1764/2188 5 80.6%

TABLE 5. Confusion matrix from independent verification of the

decision tree shown in Fig. 1 (accuracy 5 83.9%).

Classified

RI Non-RI

Observed RI 4 7

Non-RI 27 173
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POT_T100a improves the performance of the decision

tree for TC intensity change classification.

In addition, because China suffers from RI TCs that

have genesis in the SCS, the performance of the second

decision tree in the SCS region (58–208N, 1058–1208E)
for the whole period 2000–11 is evaluated since there are

only 21 samples (all are non-RI events) of independent

verification during 2011. The confusion matrix is shown

in Table 9. This decision tree shows a total accuracy of

92.0%, one out of two RI events is captured and 103 out

of 111 non-RI events are correctly classified.

b. Comparison of different intensification potential
variables

It is surprising that the intensification potential

POT_E (MPI_EminusMSW0), POT_T (MPI_Tminus

MSW0), or POT_T80a is not selected in both of the

above decision trees, although both of them are signifi-

cantly correlated with TC intensity change and show

significant differences between the RI and non-RI

classes. To examine why, the frequency distributions

of POT_E, POT_T, POT_T80a, and POT_T100a, along

with scatterplots of the other three variables versus

POT_T100a for the RI and non-RI classes, are gener-

ated using the training data and are shown in Figs. 3 and

4 , respectively. Here, POT_T100a is considered to be

the reference for comparison since it is an effective OC_

PI for classification and T100a-based OC_PI shows the

highest correlation with the observed overall TC maxi-

mum intensity (Lin et al. 2013).

A notable increase in the frequency of the RI cases is

observed for large POT_T100a values (Fig. 3a); 86% of

the RI cases take place when POT_T100a exceeds 30kt

comparedwith only 39%of the non-RI cases, and 61%of

the non-RI cases take place when POT_T100a is lower

than 30kt compared with only 14% of the RI cases.

Therefore, POT_T100a is a significant variable for the RI

and non-RI classification. For POT_T (Fig. 3b), RI and

non-RI classes show rather similar distributions, as both

events occur more frequently when POT_T is moderate;

thus, it is difficult to distinguish between RI and non-RI

with moderate POT_T. Figure 4a indicates that POT_T

values of the non-RI cases are overestimated much

more than those of the RI cases compared to POT_

T100a, especially when POT_T100a is low, resulting in

high non-RI frequency with moderate POT_T. For

POT_E (Fig. 3c), there are two peaks ofRI frequency, high

fractions of non-RI (47%) also occur around the second

RI peak when POT_E is between 45 and 90kt. Figure 4b

shows that the POT_E results of the non-RI cases are also

overestimatedmore than those of the RI cases, especially

compared to low POT_T100a, leading to high non-RI

frequency with moderate POT_E. Non-RI frequencies

appear similar (53% versus 47%) when POT_T80a is

lower or larger than 30kt, althoughRI occurs muchmore

frequently (89%) with POT_T80a of larger than 30kt

(Fig. 3d). Hence, it has difficulty identifying non-RI with

moderate to high POT_T80a since again the POT_T80a

results of the non-RI cases are overestimated more than

those of the RI cases (Fig. 4c).

The overestimation of SST-based MPI (especially for

the non-RI cases) might be because SSTs during TCs

cannot be well observed because of rain contamination

(Wentz et al. 2000; Gentemann et al. 2010a,b), and the

optimally interpolated SSTs during TCs cannot well

represent the cold wake produced by TCs (e.g.,

Mrvaljevic et al. 2013). The overestimation of MPI_T80a

(especially for the non-RI cases)might be becauseT80a is

less representative of the upper ocean’s cooling effect on

storm intensity than T100a. However, the lower but sig-

nificant correlations of POT_T, POT_E, and POT_T80a

(rather than POT_T100a) with TC intensity change seem

reasonable because the weak or moderate wind-induced

sea surface cooling generally cannot change the sign of

the TC intensification rate (Cione and Uhlhorn 2003).

4. Summary and discussion

The OC_PI index proposed by Lin et al. (2013),

which can more realistically characterize the ocean’s

TABLE 9. Confusion matrix from cross validation and in-

dependent verification of the decision tree shown in Fig. 2 for the

SCS TCs (accuracy 5 92.0%).

Classified

RI Non-RI

Observed RI 1 1

Non-RI 8 103

TABLE 8. Confusion matrix from independent verification of the

decision tree shown in Fig. 2 (accuracy 5 89.6%).

Classified

RI Non-RI

Observed RI 9 2

Non-RI 20 180

TABLE 7. Confusion matrix from cross validation of the decision

tree shown in Fig. 2 (accuracy 5 83.5%).

Classified

RI Non-RI

Observed RI 1673 246

Non-RI 389 1530
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contribution to TC intensity than traditional SST-

based MPI, is used to improve the decision tree for

TC intensity change classification. The decision tree

built with the database including OC_PI-related var-

iables (i.e., POT_T80a and POT_T100a) outperforms

that built with the database including traditional MPI-

related variables (i.e., POT_T and POT_E), in terms

of total classification accuracy, and POD and FAR for

RI events in cross validation and independent verifi-

cation. DMWS, SHR, MWS0, and LON are selected

to build the former decision tree, and DMWS, SHR,

MWS0, and POT_T100a are selected to build

the latter.

The reasons why the other intensification poten-

tial variables are not selected to build the two

decision trees are then examined. The results indi-

cate that POT_T, POT_E, and POT_T80a un-

derestimate the upper-ocean cooling effect by

overestimating the intensification potential com-

pared to POT_T100a, especially for the non-RI

cases, resulting in relatively high non-RI occur-

rence with moderate values of POT_T, POT_E, and

POT_T80a. Therefore, they are not as significant as

POT_T100a for RI and non-RI classifications in the

decision trees.

The selection of POT_T100a to build the decision

tree is of great significance for operational TC in-

tensity prediction. Simultaneously observing SSTs

during TCs is nearly impossible to do correctly by

satellites, since infrared or even microwave radiation

cannot penetrate through the rainfall around the TC

eyewall, but it can penetrate through cloud cover a

few days before the TC passage and thus pre-TC

upper-ocean temperature profiles can be estimated and

used as a good proxy for SSTs during TCs in an effort

to calculate MPI, which can ultimately be used for

operational TC intensity prediction. The performance

of OC_PI in statistical typhoon intensity prediction

and RI probability prediction merits being evaluated

operationally, which will be carried out in our future

studies.

It is noted that a few options for the pre-TC oceanic

conditions are tested for OC_PI calculation: (i) at the

time of the TC samples, (ii) 2 days before the TC in-

tensity first reaches category 1 for all of the samples of an

individual TC, and (iii) 2 days before the TC intensity

FIG. 3. Frequency distributions of (a) POT_T100a, (b) POT_T, (c) POT_E, and (d) POT_T80a for the RI and

non-RI classes.
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first reaches category 1 for the TC samples of an indi-

vidual TC before the peak and 2 days before the peak

intensity for the samples of an individual TC after the

peak. The third option shows the best performance and

thus is included in our database to build the aforemen-

tioned decision trees.

Acknowledgments. The authors are grateful to four

anonymous reviewers for their insightful comments and

suggestions that strongly improved this paper. This study

is supported by the National Natural Science Founda-

tion of China (41201045, 41505035, and 41575078), the

Jiangsu Natural Science Funds for Distinguished Young

Scholar (BK20140047), the Natural Science Foundation

of the Higher Education Institutions of Jiangsu Province

(14KJB170015), the Jiangsu Shuangchuang Doctor Pro-

gram, the Science and Technology Foundation for Se-

lected Overseas Chinese Scholars from the Ministry of

HumanResources and Social Security of China, the Fund

for Selected Overseas Chinese Scholars of Nanjing, and

the Startup Foundation for Introducing Talent of NUIST

(2014r004 and 2013r116).

REFERENCES

Chawla, N. V., 2003: C4.5 and imbalanced data sets: Investigating

the effect of sampling method, probabilistic estimate, and

decision tree structure. Proc. Int. Conf. on Machine Learning,

Washington, DC, International Machine Learning Society.

[Available online at https://www3.nd.edu/;dial/papers/

ICML03.pdf.]

Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature

variability in hurricanes: Implications with respect to intensity

change. Mon. Wea. Rev., 131, 1783–1796, doi:10.1175//2562.1.

DeMaria, M., 1996: The effect of vertical shear on tropical cyclone

intensity change. J. Atmos. Sci., 53, 2076–2088, doi:10.1175/

1520-0469(1996)053,2076:TEOVSO.2.0.CO;2.

——, 2009: A simplified dynamical system for tropical cyclone in-

tensity prediction. Mon. Wea. Rev., 137, 68–82, doi:10.1175/
2008MWR2513.1.

——, and J. Kaplan, 1994: Sea surface temperature and the maxi-

mum intensity of Atlantic tropical cyclones. J. Climate,

7, 1324–1334, doi:10.1175/1520-0442(1994)007,1324:

SSTATM.2.0.CO;2.

——, C. R. Sampson, J. A. Knaff, and K. D. Musgrave, 2014: Is

tropical cyclone intensity guidance improving? Bull. Amer.

Meteor. Soc., 95, 387–398, doi:10.1175/BAMS-D-12-00240.1.

Elsberry, R. L., L. Chen, J. Davidson, R. Rogers, Y. Wang, and

L. Wu, 2013: Advances in understanding and forecasting

FIG. 4. Scatterplots of (a) POT_T vs POT_T100a,

(b) POT_E vs POT_T100a, and (c) POT_T80a vs

POT_T100a for the RI and non-RI classes. The letter

D in the legend denotes the difference between two

variables for the RI or non-RI classes. Black and red

solid lines are the linear fits for the non-RI and RI

classes, respectively.

104 WEATHER AND FORECAST ING VOLUME 31

https://www3.nd.edu/~dial/papers/ICML03.pdf
https://www3.nd.edu/~dial/papers/ICML03.pdf
http://dx.doi.org/10.1175//2562.1
http://dx.doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1996)053<2076:TEOVSO>2.0.CO;2
http://dx.doi.org/10.1175/2008MWR2513.1
http://dx.doi.org/10.1175/2008MWR2513.1
http://dx.doi.org/10.1175/1520-0442(1994)007<1324:SSTATM>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1994)007<1324:SSTATM>2.0.CO;2
http://dx.doi.org/10.1175/BAMS-D-12-00240.1


rapidly changing phenomena in tropical cyclones. Trop. Cy-

clone Res. Rev., 2, 13–24.

Emanuel, K. A., 1986: An air–sea interaction theory for trop-

ical cyclones. Part I: Steady-state maintenance. J. Atmos.

Sci., 43, 585–605, doi:10.1175/1520-0469(1986)043,0585:

AASITF.2.0.CO;2.

——, 1988: The maximum intensity of hurricanes. J. Atmos.

Sci., 45, 1143–1155, doi:10.1175/1520-0469(1988)045,1143:

TMIOH.2.0.CO;2.

——, 1994: Atmospheric Convection. Oxford University Press,

580 pp.

——, C. DesAutels, C. Holloway, and R. Korty, 2004: Envi-

ronmental control of tropical cyclone intensity. J. Atmos.

Sci., 61, 843–858, doi:10.1175/1520-0469(2004)061,0843:

ECOTCI.2.0.CO;2.

Estabrooks, A., T. Jo, and N. Japkowicz, 2004: A multiple resam-

pling method for learning from imbalanced data sets.Comput.

Intell., 20, 18–36, doi:10.1111/j.0824-7935.2004.t01-1-00228.x.

Fayyad, U., G. Piatetsky-Shapiro, and P. Smyth, 1996: From data

mining to knowledge discovery in databases.AIMag., 17, 37–54.

Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind

shear on the intensity and structure of numerically simulated

hurricanes. Mon. Wea. Rev., 129, 2249–2269, doi:10.1175/

1520-0493(2001)129,2249:EOVWSO.2.0.CO;2.

Gao, S., and L. S. Chiu, 2010: Surface latent heat flux and rainfall

associated with rapidly intensifying tropical cyclones over the

western North Pacific. Int. J. Remote Sens., 31, 4699–4710,

doi:10.1080/01431161.2010.485149.

——, and ——, 2012: Development of statistical typhoon intensity

prediction: Application to satellite observed surface evapo-

ration and rain rate (STIPER).Wea. Forecasting, 27, 240–250,

doi:10.1175/WAF-D-11-00034.1.

Ge, X., T. Li, and M. Peng, 2013: Effects of vertical shears and

midlevel dry air on tropical cyclone developments. J. Atmos.

Sci., 70, 3859–3875, doi:10.1175/JAS-D-13-066.1.

Gentemann, C. L., T. Meissner, and F. J. Wentz, 2010a: Accuracy

of satellite sea surface temperatures at 7 and 11GHz. IEEE

Trans. Geosci. Remote Sens., 48, 1009–1018, doi:10.1109/

TGRS.2009.2030322.

——, F. J. Wentz, M. Brewer, K. A. Hilburn, and D. K. Smith,

2010b: Passive microwave remote sensing of the ocean: An

overview. Oceanography from Space, V. Baraleet al., Eds.,

Springer, 13–33.

Gray, W. M., 1968: Global view of the origin of tropical distur-

bances and storms. Mon. Wea. Rev., 96, 669–700, doi:10.1175/

1520-0493(1968)096,0669:GVOTOO.2.0.CO;2.

Han, H., W.-Y. Wang, and B.-H. Mao, 2005: Borderline-SMOTE:

A new over-sampling method in imbalanced data sets learn-

ing. Advances in Intelligent Computing, D.-S. Huang, X.-P.

Zhang, and G.-B. Huang, Eds., Springer, 878–887.

Han, J., and M. Kamber, 2006: Data Mining: Concepts and Tech-

niques. Morgan Kaufmann, 770 pp.

Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of

the interactions between tropical cyclones and upper-

tropospheric troughs. Mon. Wea. Rev., 129, 2570–2584,

doi:10.1175/1520-0493(2001)129,2570:ACSOTI.2.0.CO;2.

Hendricks, E. A., M. S. Peng, B. Fu, and T. Li, 2010: Quantify-

ing environmental control on tropical cyclone intensity

change. Mon. Wea. Rev., 138, 3243–3271, doi:10.1175/

2010MWR3185.1.

Holland, G. J., 1997: The maximum potential intensity of tropical

cyclones. J. Atmos. Sci., 54, 2519–2541, doi:10.1175/

1520-0469(1997)054,2519:TMPIOT.2.0.CO;2.

Ito, K., T. Kuroda, K. Saito, andA.Wada, 2015: Forecasting a large

number of tropical cyclone intensities around Japan using a

high-resolution atmosphere–ocean coupled model. Wea.

Forecasting, 30, 793–808, doi:10.1175/WAF-D-14-00034.1.

Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of

rapidly intensifying tropical cyclones in the North Atlantic

basin. Wea. Forecasting, 18, 1093–1108, doi:10.1175/

1520-0434(2003)018,1093:LCORIT.2.0.CO;2.

——, ——, and J. A. Knaff, 2010: A revised tropical cyclone rapid

intensification index for the Atlantic and eastern North Pacific

basins. Wea. Forecasting, 25, 220–241, doi:10.1175/

2009WAF2222280.1.

Knaff, J. A., C. R. Sampson, andM.DeMaria, 2005:An operational

Statistical Typhoon Intensity Prediction Scheme for the

western North Pacific. Wea. Forecasting, 20, 688–699,

doi:10.1175/WAF863.1.

Leipper, D. F., and D. Volgenau, 1972: Hurricane heat potential of

the Gulf of Mexico. J. Phys. Oceanogr., 2, 218–224,

doi:10.1175/1520-0485(1972)002,0218:HHPOTG.2.0.CO;2.

Leung, Y., 2010: Knowledge Discovery in Spatial Data. Springer-

Verlag, 360 pp.

Lin, I.-I., C.-H. Chen, I.-F. Pun, W. T. Liu, and C.-C. Wu, 2009:

Warm ocean anomaly, air sea fluxes, and the rapid in-

tensification of tropical cyclone Nargis (2008). Geophys. Res.

Lett., 36, L03817, doi:10.1029/2008GL035815.

——, and Coauthors, 2013: An ocean coupling potential intensity

index for tropical cyclones.Geophys. Res. Lett., 40, 1878–1882,

doi:10.1002/grl.50091.

Merrill, R. T., 1988: Environmental influences on hurricane in-

tensification. J. Atmos. Sci., 45, 1678–1687, doi:10.1175/

1520-0469(1988)045,1678:EIOHI.2.0.CO;2.

Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for

vortex Rossby waves and its application to spiral bands and

intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc.,

123, 435–465, doi:10.1002/qj.49712353810.

Mrvaljevic, R. K., and Coauthors, 2013: Observations of the cold

wake of Typhoon Fanapi (2010).Geophys. Res. Lett., 40, 316–

321, doi:10.1029/2012GL054282.

NOAA/National Centers for Environmental Prediction, 2000:

NCEP FNL Operational Model Global Tropospheric Ana-

lyses, continuing from July 1999 (updated daily). National

Center for Atmospheric Research Computational and In-

formation Systems Laboratory Research Data Archive,

accessed 28 April 2014, doi:10.5065/D6M043C6.

Price, J. F., 2009: Metrics of hurricane-ocean interaction:

Vertically-integrated or vertically-averaged ocean tempera-

ture? Ocean Sci., 5, 351–368, doi:10.5194/os-5-351-2009.
Pun, I. F., I. I. Lin, C. R. Wu, D. S. Ko, and W. T. Liu, 2007: Val-

idation and application of altimetry-derived upper ocean

thermal structure in the western North Pacific Ocean for ty-

phoon intensity forecast. IEEE Trans. Geosci. Remote Sens.,

45, 1616–1630, doi:10.1109/TGRS.2007.895950.

Quinlan, J., 1993: C4.5: Programs for Machine Learning. Morgan

Kaufmann, 302 pp.

Shay,L.K.,G. J.Goni, andP.G.Black, 2000:Effects of awarmoceanic

feature on Hurricane Opal. Mon. Wea. Rev., 128, 1366–1383,

doi:10.1175/1520-0493(2000)128,1366:EOAWOF.2.0.CO;2.

Shu, S., J. Ming, and P. Chi, 2012: Large-scale characteristics and

probability of rapidly intensifying tropical cyclones in the

western North Pacific basin. Wea. Forecasting, 27, 411–423,

doi:10.1175/WAF-D-11-00042.1.

Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and

structure changes during hurricane eyewall replacement cy-

FEBRUARY 2016 GAO ET AL . 105

http://dx.doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(2004)061<0843:ECOTCI>2.0.CO;2
http://dx.doi.org/10.1111/j.0824-7935.2004.t01-1-00228.x
http://dx.doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2
http://dx.doi.org/10.1080/01431161.2010.485149
http://dx.doi.org/10.1175/WAF-D-11-00034.1
http://dx.doi.org/10.1175/JAS-D-13-066.1
http://dx.doi.org/10.1109/TGRS.2009.2030322
http://dx.doi.org/10.1109/TGRS.2009.2030322
http://dx.doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2001)129<2570:ACSOTI>2.0.CO;2
http://dx.doi.org/10.1175/2010MWR3185.1
http://dx.doi.org/10.1175/2010MWR3185.1
http://dx.doi.org/10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2
http://dx.doi.org/10.1175/WAF-D-14-00034.1
http://dx.doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2
http://dx.doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2
http://dx.doi.org/10.1175/2009WAF2222280.1
http://dx.doi.org/10.1175/2009WAF2222280.1
http://dx.doi.org/10.1175/WAF863.1
http://dx.doi.org/10.1175/1520-0485(1972)002<0218:HHPOTG>2.0.CO;2
http://dx.doi.org/10.1029/2008GL035815
http://dx.doi.org/10.1002/grl.50091
http://dx.doi.org/10.1175/1520-0469(1988)045<1678:EIOHI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0469(1988)045<1678:EIOHI>2.0.CO;2
http://dx.doi.org/10.1002/qj.49712353810
http://dx.doi.org/10.1029/2012GL054282
http://dx.doi.org/10.5065/D6M043C6
http://dx.doi.org/10.5194/os-5-351-2009
http://dx.doi.org/10.1109/TGRS.2007.895950
http://dx.doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2
http://dx.doi.org/10.1175/WAF-D-11-00042.1


cles. Mon. Wea. Rev., 139, 3829–3847, doi:10.1175/

MWR-D-11-00034.1.

Wang, Y., 2009: How do outer spiral rainbands affect tropical cy-

clone structure and intensity? J. Atmos. Sci., 66, 1250–1273,
doi:10.1175/2008JAS2737.1.

——, and C.-C. Wu, 2004: Current understanding of tropical cy-

clone structure and intensity changes—A review. Meteor.

Atmos. Phys., 87, 257–278, doi:10.1007/s00703-003-0055-6.
Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, 2000:

Satellite measurements of sea surface temperature

through clouds. Science, 288, 847–850, doi:10.1126/

science.288.5467.847.

Xu, J., and Y.Wang, 2015: A statistical analysis on the dependence

of tropical cyclone intensification rate on the storm intensity

and size in the North Atlantic. Wea. Forecasting, 30, 692–701,
doi:10.1175/WAF-D-14-00141.1.

Yang, R., T. Jiang, and M. Kafatos, 2007: Improved associated

conditions in rapid intensifications of tropical cyclones. Geo-

phys. Res. Lett., 34, L20807, doi:10.1029/2007GL031241.

——, D. Sun, and T. Jiang, 2008: A sufficient condition combina-

tion for rapid intensifications of tropical cyclones. Geophys.

Res. Lett., 35, L20802, doi:10.1029/2008GL035222.

——, T. Jiang, and D. Sun, 2011: Association rule data mining ap-

plications for Atlantic tropical cyclone intensity changes. Wea.

Forecasting, 26, 337–353, doi:10.1175/WAF-D-10-05029.1.

Yu, H., and H. J. Kwon, 2005: Effect of TC–trough interaction on

the intensity change of two typhoons. Wea. Forecasting, 20,

199–211, doi:10.1175/WAF836.1.

Yu, Z., D.Wu, and H. Yu, 2013: Rapid intensification near landfall

of Typhoon Vicente (2012). Trop. Cyclone Res. Rev., 2, 1–12.

Zeng, Z., Y. Wang, and C.-C. Wu, 2007: Environmental dynamical

control of tropical cyclone intensity—An observational study.

Mon. Wea. Rev., 135, 38–59, doi:10.1175/MWR3278.1.

——, L. Chen, and Y. Wang, 2008: An observational study of en-

vironmental dynamical control of tropical cyclone intensity in

the Atlantic. Mon. Wea. Rev., 136, 3307–3322, doi:10.1175/

2008MWR2388.1.

——, Y. Wang, and L.-S. Chen, 2010: A statistical analysis of ver-

tical shear effect on tropical cyclone intensity change in the

North Atlantic. Geophys. Res. Lett., 37, L02802, doi:10.1029/

2009GL041788.

Zhang, Q., Q. Liu, and L. Wu, 2009: Tropical cyclone damages in

China: 1983–2006. Bull. Amer. Meteor. Soc., 90, 489–495,

doi:10.1175/2008BAMS2631.1.

Zhang, W., S. Gao, B. Chen, and K. Cao, 2013a: The application of

decision tree to intensity change classification of tropical cy-

clones in western North Pacific.Geophys. Res. Lett., 40, 1883–

1887, doi:10.1002/grl.50280.

——, Y. Leung, and J. C. L. Chan, 2013b: The analysis of tropical

cyclone tracks in the western North Pacific through data

mining. Part I: Tropical cyclone recurvature. J. Appl. Meteor.

Climatol., 52, 1394–1416, doi:10.1175/JAMC-D-12-045.1.

——,——, and——, 2013c: The analysis of tropical cyclone tracks

in the western North Pacific through data mining. Part II:

Tropical cyclone landfall. J. Appl. Meteor. Climatol., 52, 1417–

1432, doi:10.1175/JAMC-D-12-046.1.

——, B. Fu, M. S. Peng, and T. Li, 2015: Discriminating developing

versus nondeveloping tropical disturbances in the western

North Pacific through decision tree analysis.Wea. Forecasting,

30, 446–454, doi:10.1175/WAF-D-14-00023.1.

106 WEATHER AND FORECAST ING VOLUME 31

http://dx.doi.org/10.1175/MWR-D-11-00034.1
http://dx.doi.org/10.1175/MWR-D-11-00034.1
http://dx.doi.org/10.1175/2008JAS2737.1
http://dx.doi.org/10.1007/s00703-003-0055-6
http://dx.doi.org/10.1126/science.288.5467.847
http://dx.doi.org/10.1126/science.288.5467.847
http://dx.doi.org/10.1175/WAF-D-14-00141.1
http://dx.doi.org/10.1029/2007GL031241
http://dx.doi.org/10.1029/2008GL035222
http://dx.doi.org/10.1175/WAF-D-10-05029.1
http://dx.doi.org/10.1175/WAF836.1
http://dx.doi.org/10.1175/MWR3278.1
http://dx.doi.org/10.1175/2008MWR2388.1
http://dx.doi.org/10.1175/2008MWR2388.1
http://dx.doi.org/10.1029/2009GL041788
http://dx.doi.org/10.1029/2009GL041788
http://dx.doi.org/10.1175/2008BAMS2631.1
http://dx.doi.org/10.1002/grl.50280
http://dx.doi.org/10.1175/JAMC-D-12-045.1
http://dx.doi.org/10.1175/JAMC-D-12-046.1
http://dx.doi.org/10.1175/WAF-D-14-00023.1

